CFD Modeling of glass melting processes

Presentation strongly reduced, i.e. confidential slides and pictures taken out

TNO | Knowledge for business

Modeling team TNO Glass Group, the Netherla

Glassman Europe Lyon, France 13-14 May 2009

Head Office TNO Glass Group, Eindhoven, The Netherlands

- TNO: Global provider of knowledge and technology
 - around 4,500 professionals
 - 450 patents
- ± 1,000 people serving process industries like oil, gas, chemistry, cement, energy, glass, etc.
- TNO Glass Group: > 30 scientific and industrial experts in glass segment

Introduction

- Critical issues on glass melting for industry:
 - Decrease energy consumption
 - Improve product quality and decrease reject
 - Increase production and reduce production costs
 - Decrease emissions (pollutants, CO₂)
 - Increase furnace life time
 - Stabilize production process
- More often than not:
 - Contradicting requirements
 - Process knowledge difficult to obtain from experiments
 - Trial-and-error methods expensive and time-consuming
 - Contra-intuitive conclusions
- CFD Modeling often a key to make steps forward
 - Mean to analyze, optimize and innovate complex processes involved

T

- What is CFD?
- CFD: Computational Fluid Dynamics
 - And not: Colors For Directors
- Flow, temperatures, etc. governed by:
 - Navier-Stokes equations (mass- and momentum conservation)
 - Energy conservation equation
 - Chemistry (species conservation)
 -
- Set of coupled, non-linear partial differential equations:
- Numerical approach as analytical solutions do not exist
- Hence, discretization of geometry in many small volumes
 typically order of 10⁵-10⁶
- Iterative procedure to solve for each volume
 - Balances for mass, momentum, energy, chemical species

Typical workflow

- Run a simulation and obtain converged result:
 - Typical turn-around time 1 day
 for a complete glass melting furnace
 - Balances on all volumes for all variables should be "zero"
 - · Variables should no longer change
- Inspection of results, e.g by
 - Visualization of variables in post-processor
 - Particle tracing •
 - Comparison of monitor and thermocouples values
- Evaluate furnace performance parameters, such as:
 - Product quality •
 - Energy efficiency
 - **Emission** level •
- Formulate and implement potential improvements
 - on furnace design and/or process settings
- Run adapted simulation and verify assumptions

- What do you get?
- Quality parameters by particle tracing, such as
 - min. residence time
 - melting and fining index
- Global mass-, species and energy balances
- 1D values on monitoring points of all variables (thermocouple values)
- 2D fields on surfaces / interfaces of:
 - Temperature, heat flux
 - Glass volatilization rate, refractory corrosion rate
 - Fining gas release rate
- 3D fields in melt / combustion space / refractories of:
 - Velocity components, pressure, temperature
 - Species concentrations such as:
 - Primary gas components (CO₂, CO, H₂O, CH₄, N₂, O₂, etc.)
 - Secondary gas components (NaOH, HBO₂, NO_x, soot, etc.)
 - Glass (fining agent, dissolved & released fining gases, coloring components)
 - Boosting potential fields and heat release
 - Properties (viscosity, density, absorption coefficient, etc.)

7 D. Hegen

TNO CFD Modeling GTM-X: Multi-physics / multi-domain

- Refractory:
 - Temperature
- Glass Melting:
 - Laminar buoyancy dominated flow
 - Glass color and properties from redox state
 - Melting and rheology in batch blanket

Combustion space:

- Turbulent flow, radiation modeling
- Combustion
- NO_x and soot formation/oxidation
- Transport of pollutants

• Interfaces:

- · Volatilization and depletion
- Refractory corrosion
- Foam formation

GTM-X: Highlights

- Multi-physics modeling
- Non-orthogonal body-fitted grid
- Parallel computing and local grid refinement
- One GUI for pre- and post-processing
- Developed in close collaboration with industry
- Extensively tested and validated
- Equipped for design studies

GTM-X: Solutions and services for industry

- 1. Case studies: Base case and parameter variations
 - Stepwise approach in close cooperation with glass manufacturer
 - Main results
 - GTM-X model of furnace
 - Expertise & Consultancy
 - Optimized/enhanced furnace operation/design
- 2. Furnace support contracts
 - GTM-X model of furnace serves to answer (short-term) questions from production
- 3. Application support contract
 - Model set-up for furnaces mainly done by TNO
 - Delivery of models with GTM-X license attached
 - Customer able to perform additional modelling activities such as parameter variations

GTM-X: Solutions and services for industry

- 4. Licenses on GTM-X
 - Covering number of users and specific modules
 - Includes user support
- 5. Participation in GTM-X consortium
 - Development, testing & validation in close cooperation with group of major glass manufacturers
 - Execution of 3-year programme on further development of GTM-X
 - Running already since last century
 - Includes significant number of licenses with support

Industrial application of GTM-X Characteristics

Fiber glass furnace characteristics

- Glass melt
 - Borosilicate fiber glass (E-glass), ± 100 tons/day
 - Two bubbler rows
 - Electrical boosting, ± 500 kW
 - Melting surface area ± 90 m²
- Combustion space
 - Oxy fuel
 - Staggered positioned burners
 - Heat input ± 7.5 MW

Volatilization

- Major volatile component from boron (B_2O_3)
- Most important reaction mechanism:

 $B_2O_3(m) + H_2O(g) \Leftrightarrow 2HBO_2(g)$ (meta-boric acid)

- Depletion of boron due to evaporation has to be compensated by expensive overdosing
- Pollutant boric acid must be removed from flue gas by scrubber

GTM-X volatilization model

- Empirical relation obtained from
 - extensive lab experiments
 - measurements in industrial furnaces
- Volatilization flux depends on local values:

- Relation available in GTM-X:
 - Strong combination of empirical and detailed flow/temperature data
 - Accurate prediction of emission levels of volatile components

Parameter variations

- 1. Base case
- 2. Burners lifted 10 cm
- 3. Burners lowered 10 cm
- 4. Crown lifted 10 cm with respect to glass surface

Summary of parameter study

	Volatilisation flux HBO ₂ kg/s	-	measured similar furn gr/hr	Change in Vola flux %
basecase	3.11E-03	11211	10646	0.0%
burners 10 cm lifted burners 10 cm lowered	2.93E-03 3.24E-03	10553 11667	10646 10646	-5.9% 4.1%
crown 10 cm lifted	2.39E-03	8612	10646	-23.2%

TNO CFD Modeling Conclusions on industrial application

- 25% lower evaporation rate of boron can be achieved
 - 100 tons/year of colemanite (boron batch compound) can be saved
- Volatilization rate
 - in agreement with measurements in similar furnace
 - not very sensitive to burner height
 - very sensitive to crown height
- Predicted foam thickness corresponds well with industrial observations

Conclusions on general application for glass melting

Validated CFD modeling tools, such as GTM-X, useful for melting process to predict (amongst others):

- Pollutant emission levels
- Evaporation rates of volatile components

TNO's CFD model is offered and applied (in several settings for industry) to optimize melting processes and to accomplish:

- Energy consumption decrease
- Product quality improvement
- Reduction of production costs
- Production increase
- Furnace life time increase
- Production process stabilization

