Innovations of Glass Melting Methods in USA

Glassman Europe 13 May 2009

Michael Greenman Executive Director

Structure of GMIC
Melting Technologies
Additional Direction
Waste Heat Recover
Alternative Energy Sources

GMIC Membership

Four Glass Categories (20) (2007 – International)

- ≻ Container
- ≻ Flat Glass
- Fiberglass (Insulation and Textile)
- ➢ Specialty
- Associate Members (22)
- ➤ University (11)
- ≻ Affiliate (13)
 - Individuals, Consultants, Small Research Groups

Submerged Combustion Melter

Primary Features

Metal Box – Watercooled Walls

Oxy-Fuel Burners

Low Capital Cost

≻ (-60%)

Low Footprint

(6-8 X Pull Rate for equivalent area)

High Efficiency, Low Emissions

➤ (20% more efficient)

High Flexibility

➤ 4 hours hot to cold or cold to hot

New products, markets, business models

IMM – first commercial Application

➤ Water Glass

Work on Refining project

SCM – Pilot Melter

Submerged Combustion Melter

SCM Process

- 1- Batch charger;
- 2- Refractory lining;
- 3- Water cooled panels;
- 4- Melting zone;
- 5- Exhaust;
- 6- Melt outlet;
- 7- Submerged oxygas burners;
- 8- Batch material (sloped pocket of batch)

Cross-Cutting Applications

- Steel Industry Electric Arc Furnace Dust
- Aluminum Spent Aluminum Potliner
- Forest Products Black Liquor Gasification
- Cement Blended and Specialty Cements
- Chemicals Sodium Silicate
- Waste Vitrification Portable Move to location
- Mineral Wool Original Application
- Nuclear Waste Stabilization Increase Cost-Effectiveness

Indiana Melting and Manufacturing, LaPorte, IN

Melter Sidewall

Additional Innovative Research Projects

➢Oxy-Fuel Front End

_ Development/Demonstration of Advanced Oxy-Fuel Front End

Oxy-Fuel Front End
Fewer Burners
61% Reduction in Total Energy Usage
64% Reduction in CO2 Emissions
No Adverse Impact on Productivity

Proposed CGM Project

Linde proposal – seeking partners Benefits of CGM combined with SCM Segmented design ➢ Melter ➢ Refiner Thermal Conditioning Objective: increase pull of furnace by 100% for a given size.

High Performance Modular Design - 1

High Performance Modular Design - 2

Similar design as existing furnaces
Convert with same footprint
Energy reduction at lower capital costs
10% energy reduction
25% reduction in capital costs
Double throughput

Strength of Glass

Condition of Glass

- Surfaces ground and sandblasted
- Pressed Articles
- Blown Ware:
 - Hot Iron Molds
 - Paste Molds
 - Inner Surfaces
- Drawn tubing or rod
- Window Glass
 - ➤ LCD (0.65 mm)
- Annealed fibers
 - Annealed
- Freshly drawn
- Gorilla Glass (Apple iPhone)
- Telecommunications Fiber

Ib/Square Inch

< 4,000 3,000 - 8,000

 $\begin{array}{r} 4,000-9,000\\ 5,000-1,500\ 10,000\\ 15,000-40,000\\ 6,000-15,000\\ 8,000-20,000\\ \sim 45,000\end{array}$

10,000 - 40,000 30,000 - 400,000 100,000-200,000 >100,000

Glass Strength Contest

4,000 feet above the Colorado River, you'll find

All glass Skywalk at the Grand Canyon allows a nitors to look straight down at the Gelerade River a rost feet telow

Details and updates at www.materialadvantage.org

and Pleasands and the MEP international Higherick, Institute on the - Otened ait pearl 800,000 hr the had to an adulta for two, comparison applications for plane hower or a 204 provement is the brough of metadect est-detion are left he a description of HERV yes, would address the NIX steeruph chancement fiel ratios and me protects may

at total severage actual interior if a stranger given were in White edited as been The start year investation, manifold - make while interes, in an Brow hay printer And the local

Forefflies dis Okinines Elege 6, 6333

► Ultra-Thin film Solar Cells Energy Storage Glass Balloon Satellites Liquid Mirror Telescopes Structural Supports

Ultra-Strong Glass

Glass Strength – Next Steps

- Bi-Annual Contest
- Meetings/Conferences
 - "Towards Ultrastrong Glass (Germany) September 2008
 - "Roadmap Brainstorming" conference (Europe) Spring 2009
 - Global Conference at PacRim/GOMD/ICG (Vancouver) – June 2009
- Brain Trust
 - Identify experts around the world with interest/knowledge in glass strength.
 - <u>http://glass-fracture.org</u>

Additional Developments

► Waste Heat Recovery ≻Pre-Heat Batch/Cullet Distributed Generation Glass Plant as Power Plant Solar Energy > Alternative Fuels ➢ Coal Gasification, Landfill Gas

Repowering Existing Coal Burning Power Stations

Calderon Clean Coal Technology for the Co-Production Of Liquid Transport Fuel, Electric Power and Oxamide*

OXAMIDE

Examide is a super-fertilizer and a substitute for UREA it possesses slow release properties

www.gmic.org

+1-614-818-9423