

Atmospheric Impact Assessment

Armand ALBERGEL- aalbergel@aria.fr

ARIA Technologies SA

8-10, rue de la Ferme – 92100 Boulogne Billancourt – France Telephone: +33 (0)1 46 08 68 60 – Fax: +33 (0)1 41 41 93 17

E-mail: info@aria.fr – http://www.aria.fr

ARIA Technologies

ARIA Technologies was founded in 1990 by a group of researchers from the R&D department of EDF, the French electricity board.

It is now an independ its field in Europe.
Its headquarters are located near Paris, with offices in France and a sister company, ARIANET, in Milan, Italy.

One focus: modeling the atmospheric environment

- •from building scale to continental scale
- •from simple screening models to fullblown CFD solutions
- •keeping consulting, software, systems and training tightly linked
- •with an international and open approach, close to top R&D centres.

Application domains

Industry

- → Environmental Impact Assessment
- → Risk Assessment
- → On-site supervision systems
- → Renewable Energies

Public sector

- → Regional and Urban scale air quality modelling and forecast systems
- → Scenarios and planning (emission reductions)

Defence

- → NRBC Agent dispersion Modelling
- → Anti-terrorism decision support systems

Since 1998, ARIA Technologies has taken part in over one hundred air pollution dispersion studies related to industrial sites Power plants, incinerators, Waste Treatment facilities.

- → Air quality and ground deposition
- → Odors
- → Health Risk Assessment.

- I dentification of dangers:
 - •chronic toxicity
 - •carcinogenic risk
- •Dose-response relationship analysis:
 - •threshold toxicants known as "systemic toxics"
 - non-threshold toxicants such as carcinogenic pollutants
- •Calculation of exposure:
 - •inhalation
 - ingestion
- •Assessment of health risk:
 - Threshold toxicants: danger ratio
 - Non-threshold toxicants: probability of developing a cancer

Odors

Odors & VOC on line emissions monitoring

Electronic noses analyzers constellation

RQ BOX constellation

Data access on central monitoring center

On-site modelling system: ARIA

View®

Meteorological data (site station - forecast)

Data collection, model runs

Emission data, computed / measured

	kg/j			
	S0 ₂	CO	PS	Pb
J1	264	30	48	0,6
<i>J</i> 2	222	25	40	0,5
<i>J</i> 3	342	39	62	0,8
<i>J4</i>	350	40	64	0,8
J28	425	48	77	1,0
<i>J</i> 29	369	42	67	0,9
<i>J30</i>	201	23	36	0,5

Maps of results (Web compatible)

- Concentrations, depositions
- Odours
- Tracking critical points
- Backwards trajectories

- Manage exposure and risk
- Broadcast results
- Evaluate health risks

Regulatory constraints

Collective air pollution control in an industrial basin

- Share the responsibility and the investments on air concentration bases and not only on total year emissions
- Ambient air monitoring networks are generally not enough dense to cover the whole area

Individual air control for some industries

- Example of a domestic waste incinerator: Monitoring the impact in the vicinity of the installation (Art 30 et 31 of the law 20 September 2002 concerning burning installation of hazardous and nonhazardous waste):
 - Initial diagnostic : before the installation opening
 - Between 3 and 6 months : after the installation runing
 - Routine update : at least annually

Need of an on-line Supervision tool

A global tool to :

- Optimize the atmospheric environment supervision
- Improve internal and external communication (HQ and quick adaptability): neighborhood, Local authorities, routine reporting, nongovernmental association...
- Analyze, understand and explain the impact of their own releases

How?

- On-line concentration and deposition of main pollutants (NO₂, dioxines, heavy metals...) considering real emissions and actual meteorological data
 - Comprehensive Maps
 - Help to design measurement campaign
 - Ready to run in case of accidental / exceptional releases
- → A detailed knowledge of the impact of their own installations

Need of an on-line Supervision tool

- Editing results every 3 hours:
 - concentration and deposition maps
 - summary table of values
- Continuous update of computational values on key points:
 - daily,
 - Monthly
 - Annually (main statistics as centils)
- Time series of meteorological data and emission
- Data base backup for all data and results (Yearly base)
- Detailed run on request (peak, accidental or exceptional release)
- Optimization (measurement, day-to-day reporting,...) of the supervision

Where are the difficulties?

■ Numerical geographical data → OK

- Topography and land use largely available world wide now and especially in Europe
- GIS are widely used

■ Meteorological data → OK

- Better sensors and denser network
- Numerical forecast and analyses better quality
- Progress on Meso-scale modeling

■ Emissions → OK ?

- Better understanding using 'universal' classification like SNAP and emission factors
- Self-monitoring emission CEMS or PEMS

■ Computational and numerical network → OK

- Power increased on low cost computer
- Internet / intranet / ADSL communication
- Numerical techniques become central

temperature

General flowchart

Meteo data **Database consolidation** Wind, temperature, rain **Automatic impact model run** M600.0 400.0 Site Jour (MM/JJ/AA): 06/29/1999 Heure (HH:MN:SS) : 21:00:0.00 **Emission monitoring** Specific analyses as heavy metals and dioxins...) Data acquisition system and Sampling program Automatic report editing Self control continuous measurements: HCI, CO, CO2, SO2, NOx, COT, NH3, H2O, O2, N2O, flowrate and

Results

- Air Concentration data
 - Maximum: Localization and values
 - Editing values on a list of key points
- Monthly and annual synthesis
- Maps of concentrations et deposition (dry and with rain)
- Detailed peak episode on request
- Automatic and exhaustive data backup and archives

Thiverval-Grignon Incinerator Plant (France)

Stack seen from the roof

Site features:

- Isolated plant
- Gently rolling terrain
- ✓ Single stack
- CEMS system in place (ESA)
- Dedicated meteorological station

Site surroundings

Thiverval-Grignon Incinerator plant -(France) ------

ARIA View: instantaneous plume every 30 minutes

Thiverval-Grignon Incinerator Plant

ROMPETROL Refinery (Romania)

Site features :

- Large petro-chemical platform on the Black Sea shore (Costantza)
- CEMS in place (ENVIRONNEMENT SA)
- Dedicated meteorological station

ROMPETROL Refinery (Romania)

ROMPETROL Refinery (Romania)

03/09/2006 at 00:30:0.00

What next: real time for local scale

MSS: Urban Dispersion with obstacles

MSS Urban Dispersion Simulation

Questions?

Now or aalbergel@aria.fr