

Oxy-firing development and hollow glass applications

Glassman Europe – Lyon - 13&14 May 2009 philippe.beaudoin@airliquide.com

Summary

Oxy-firing development

- Combustion with pure oxygen
- Development in glass industry

Focus on hollow glass applications

- End of campaign furnace boosting
- Flame polishing
- Feeder with oxy-firing

Methane - Air $CH4 + 2 O2 + 8 N2 \longrightarrow CO2 + 2 H2O + 8 N2 + Energy$

Methane - Oxygen $CH4 + 2 O2 + 8 \swarrow 2 \longrightarrow CO2 + 2 H2O + 8 \swarrow 2 + Energy$

Benefits on combustion

- Flue gas reduction (3.5 time lower)
 - Improve end of campaign furnace performance / plugged regenerator
- Flame temperature increase (+ 900°C) / Fuel saving
 - Improve combustion efficiency if combustion air is not at high temperature
 - Flame polishing / Feeder
- Reduce pollutant emission (NOx, CO2, dust, Sox …)
- Reduce investment cost

Process needs improvements

- Lower emissions requirement
- Fuel cost savings
- Quality
- Flexibility

Gas supply offer developments

- Reliable gas supply from centralized plant (Bulk)
 - Flexibility / Short term supply commitment
- On site production for medium size supply (VSA technology)
 - Optimized size for dedicated plant
- Oxy-firing solutions are easier to implement

Industrial gases supply and production mode

Glass work

- Glass polishing
- Mold and belt lubrication with acetylene cracking

Oxygen boosting

- Pull maintain at campaign end
- Pull increase on float glass
- Chamber repair with furnace conversion to oxy-firing

Glass melting

- Technical glass / Fiber glass (Limited for container glass and flat glass)
- <u>New application, oxy-firing front en (feeder)</u>

Summary

Oxy-firing development

- Combustion with pure oxygen
- Development in glass industry

Focus on hollow glass applications

- Flame polishing
- End of campaign furnace boosting
- Feeder with oxy-firing

Flame polishing

Well established technology

- Market
 - Table ware (NG oxy-firing) : edge melting + polishing
 - Perfume bottle (H2 or NG oxy-firing) : polishing
- Technology
 - Dedicated burner with various size (FMT)

Recent developments

- Standardized oxy-gas control skid
 - Version one global power control => same power for each burner
 - Version multi-burner control => one by one burner power setting
- Application for high quality articles in various sectors
- This technology is available for new market
 - Packaged offer for rapid implementation

Flame polishing - Burner

FMT burner

- Patented by Air Liquide in 1984
- Specific construction
 - Long burner life in high temperature environment
 - Low maintenance
 - No water cooling
- For most productions, few sizes are used
 - But wide range of sizes available on catalogue

Updated standardized oxy-gas control skid

- Fuel is Hydrogen, Natural gas or propane
- CE norm
- Burner per burner control
 - Manual flow adjustment per burner

or

- Automatic flow adjustment per burner
- Dedicated to one production line

Flame polishing - Low cost skid

Updated standardized oxy-gas control skid

- Fuel is Hydrogen, Natural gas or propane
- CE norm
- Global control
 - Simple to implement
 - Easy to move from one line to an other

AIR LIQUIDE

Flame polishing – Line implementation

Aim of oxygen boosting

- Pull maintain for end of campaign
- Partial O2 conversion for regenerator repair
- Pull increase with additional oxy-fuel burners

Recent development

- Systematization of mass and heat balance to predict O2 flow
- Non water cooled oxygen lances
- Flexible solution to limit work on the furnace
- Short delivery time with rental skid
- European technical network (9 persons) to share best practices

Customer inquiry

Data sample / Customer objective validation

Visit / questionnaire

Process analysis / Technical proposal

- Heat and mass balance calculation
- Process description and performance
- Equipment description / cost / delivery time

Equipment supply

- Manufacturing of O2 lances & Equipment set up on customer site
- Oxygen tank & piping construction

Start up assistance – 5 to 10 weeks after customer inquiry

- Parameter adjustment
- Flue gas analysis

Heat and mass balance results

- First case will describe furnace current situation
 - Furnace current limitations compared to normal operation
- Oxygen boosting case based on current situation understanding to achieve various objectives
 - Flue gas reduction versus normal operation
 - Pull increase with same flue gas
 - CO concentration in flue gas reduction
- New operating parameters
 - Proposal for oxygen flow to achieve customer objectives
 - Oxygen injectors positions

Heat and mass balance application

- Current situation (case 1)
 - Pull limited by furnace pressure
 - Presence of CO in flue gas
 - Need to improve combustion c

Oxygen boosting (case 2)

- Pull increase by 10%
- Same combustion air flow
- Oxygen injection
- 2% O2 in dry flue gas
- Possible optimizations
 - Flue gas reduction
 - Cullet ratio change

Case		Case 1	Case 2
Pull rate	t/d	400	440
Pull variation	%		10%
Natural gas flow	Nm3/h	0	0
Fuel oil flow	kg/h	1595	1650
Electric boosting	kWh	1000	1000
Total consumption	kW/t	1128	1059
Combustion air flow	Nm3/h	16000	16000
Air leaks	Nm3/h	500	500
Oxygen flow (100%)	Nm3/h	0	566
Oxygen enrichment	%	20,9%	23,6%
Flue gas volume	Nm3/h	18454	19028
Flue gas volume variation	%		3%
Flue gas temperature	°C	1480	1480
O2 in dry flue gas	%	0%	2,0%
CO2 in dry flue gas	%	18,2%	19,7%
CO in dry flue gas	%	1,2%	0%

Furnace boosting – Technical study

Case		Case 1	Case 2
Pull rate	t/d	400	440
Pull variation	%		10%
Natural gas flow	Nm3/h	0	0
Fuel oil flow	kg/h	1595	1650
Electric boosting	kWh	1000	1000
Total consumption	kW/t	1128	1059
Combustion air flow	Nm3/h	16000	16000
Air leaks	Nm3/h	500	500
Oxygen flow (100%)	Nm3/h	0	566
Oxygen enrichment	%	20,9%	23,6%
Flue gas volume	Nm3/h	18454	19028
Flue gas volume variation	%		3%
Flue gas temperature	°C	1480	1480
O2 in dry flue gas	%	0%	2,0%
CO2 in dry flue gas	%	18,2%	19,7%
CO in dry flue gas	%	1,2%	0%

AIR LIQUIDE

Direct oxygen injection in the furnace chamber (example)

- Manuel ball valve (open / close) on each point of use (1)
- Flexible to O2 lance (2)
- Orifice with adapted orifice diameter to control and limit the flow (3)
- Non water cooled O2 lance inserted in the port close to the fuel injector (4)

Oxy-gas feeder

New application

- First reference for Air Liquide in 2004
- Need for further test works to validate on all glass segments

Oxy-gas drivers for feeder

- Energy cost increase
- High demand on natural gas
 - CO2 emission reduction
 - New user (industry, power station,...)
- CO2 emission control
 - Need to reduce CO2 emission
- Process improvement

With existing O2 supply (flame polishing – oxy-fired melting)

Attractive O2 price for this technology

Oxy-gas feeder - ALGLASS-FH

- Uniform heat distribution
- Feeder temperature up to 1550°C
- Power flexibility 3 to 9 kW

- Constant flame length when power varies
- Can be implemented on existing feeder blocks
- Low pressure drop (NG 0,5 bar / O2 0,2 bar)
- External mixing of NG and O2

Oxy-gas feeder - ALGLASS-FH

- Implementation of ALGLASS FH in same burner block as air-gas burner
- Less burners number versus air-gas operation
- Natural gas saving from 40 to 60%

Oxy-gas feeder - ALGLASS-FH

ALGLASS FH implementation for test

Air-gas burner

AIR LIQUIDE

Oxy-gas feeder - ALGLASS-FH Offer

Economical balance for the implementation of ALGLASS FH

- Identification of customer objective for process improvement
- Natural gas saving & Oxygen consumption
- Budget calculation for the investment
 - Burners
 - Gas distributors, supports, flexibles, connections
 - Power control skid

Validation test on one zone

- Validation of burner operation in the customer conditions
- Customer specific parameters
 - Interaction with the glass (volatilization, quality)
 - Refractory compatibility
 - Natural gas saving & and oxygen consumption

Equipment of a complete feeder

air liquide

Oxy-gas feeder : Budgetary study

Air-gas situation

- Natural gas consumption 370 Nm3/h
- 1500 air gas burners
- 40 zones of temperature control

Oxy-gas hypothesis

- Natural gas consumption 140 Nm3/h
- Oxygen consumption 270 Nm3/h
- 500 oxy-gas burners (average power 2,8 kW)
- 30 zones of temperature control

Economical balance

- Benefit = NG saving O2 cost
 - 250 k€/year with 50% natural gas saving
 - 400 k€/an with 60% natural gas saving
- Investment cost 700 k€ (piping excluded)
- Other benefits : temperature, CO2 reduction (3500 t/y), glass quality

Oxy-firing advantages has been presented
Access to oxygen become easier

Well established techniques are currently used

- Limited technical risk
- Well mastered cost and implementation delay

Emerging oxy-firing techniques are implemented
New developments continue to appear

Air Liquide is available to study your particular case