Oxy-firing development and hollow glass applications

Glassman Europe – Lyon - 13&14 May 2009
philippe.beaudoin@airliquide.com
Summary

- **Oxy-firing development**
 - Combustion with pure oxygen
 - Development in glass industry

- **Focus on hollow glass applications**
 - End of campaign furnace boosting
 - Flame polishing
 - Feeder with oxy-firing
Oxygen for combustion application

- Methane - Air
 \[\text{CH}_4 + 2 \text{O}_2 + 8 \text{N}_2 \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O} + 8 \text{N}_2 + \text{Energy} \]

- Methane - Oxygen
 \[\text{CH}_4 + 2 \text{O}_2 + 8 \text{N}_2 \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O} + 8 \text{N}_2 + \text{Energy} \]

- Benefits on combustion
 - Flue gas reduction (3.5 time lower)
 - Improve end of campaign furnace performance / plugged regenerator
 - Flame temperature increase (+ 900°C) / Fuel saving
 - Improve combustion efficiency if combustion air is not at high temperature
 - Flame polishing / Feeder
 - Reduce pollutant emission (NOx, CO2, dust, Sox …)
 - Reduce investment cost

World leader in gases for industry, health and the environment
Oxy-firing drivers & Gas supply

- Process needs improvements
 - Lower emissions requirement
 - Fuel cost savings
 - Quality
 - Flexibility

- Gas supply offer developments
 - Reliable gas supply from centralized plant (Bulk)
 - Flexibility / Short term supply commitment
 - On site production for medium size supply (VSA technology)
 - Optimized size for dedicated plant

- Oxy-firing solutions are easier to implement
Industrial gases supply and production mode

Production

- Centralized plant

Distribution

- 1900: Cylinder (3t of gas / truck)
- 1950: Bulk (20 t of gas / truck)
- 1970: Pipe line (long term / industrial area)

Customer

- 1990: On-site (long term)

Legend:

- Plant on customer’s premises

World leader in gases for industry, health and the environment
Main oxy-gas applications

Glass work
- Glass polishing
- Mold and belt lubrication with acetylene cracking

Oxygen boosting
- Pull maintain at campaign end
- Pull increase on float glass
- Chamber repair with furnace conversion to oxy-firing

Glass melting
- Technical glass / Fiber glass (Limited for container glass and flat glass)
- New application, oxy-firing front en (feeder)
Summary

- Oxy-firing development
 - Combustion with pure oxygen
 - Development in glass industry

- Focus on hollow glass applications
 - Flame polishing
 - End of campaign furnace boosting
 - Feeder with oxy-firing
Flame polishing

- Well established technology
 - Market
 - Table ware (NG oxy-firing) : edge melting + polishing
 - Perfume bottle (H2 or NG oxy-firing) : polishing
 - Technology
 - Dedicated burner with various size (FMT)

- Recent developments
 - Standardized oxy-gas control skid
 - Version one global power control => same power for each burner
 - Version multi-burner control => one by one burner power setting
 - Application for high quality articles in various sectors

- This technology is available for new market
 - Packaged offer for rapid implementation
Flame polishing - Burner

- FMT burner
 - Patented by Air Liquide in 1984
 - Specific construction
 - Long burner life in high temperature environment
 - Low maintenance
 - No water cooling
 - For most productions, few sizes are used
 - But wide range of sizes available on catalogue

Fuel \rightarrow O_2
Flame polishing - High repeatability skid

- Updated standardized oxy-gas control skid
 - Fuel is Hydrogen, Natural gas or propane
 - CE norm
 - Burner per burner control
 - Manual flow adjustment per burner or
 - Automatic flow adjustment per burner
 - Dedicated to one production line
Flame polishing - Low cost skid

- Updated standardized oxy-gas control skid
 - Fuel is Hydrogen, Natural gas or propane
 - CE norm
- Global control
 - Simple to implement
 - Easy to move from one line to another
Flame polishing – Line implementation

Belt conveyor

Burners

IS machine

Burners

World leader in gases for industry, health and the environment
Furnace boosting

- Aim of oxygen boosting
 - Pull maintain for end of campaign
 - Partial O2 conversion for regenerator repair
 - Pull increase with additional oxy-fuel burners

- Recent development
 - Systematization of mass and heat balance to predict O2 flow
 - Non water cooled oxygen lances
 - Flexible solution to limit work on the furnace
 - Short delivery time with rental skid
 - European technical network (9 persons) to share best practices
Furnace boosting – Project main steps

- Customer inquiry

- Data sample / Customer objective validation
 - Visit / questionnaire

- Process analysis / Technical proposal
 - Heat and mass balance calculation
 - Process description and performance
 - Equipment description / cost / delivery time

- Equipment supply
 - Manufacturing of O2 lances & Equipment set up on customer site
 - Oxygen tank & piping construction

- Start up assistance – 5 to 10 weeks after customer inquiry
 - Parameter adjustment
 - Flue gas analysis
Furnace boosting – Technical study

- Heat and mass balance results
 - First case will describe furnace current situation
 - Furnace current limitations compared to normal operation
 - Oxygen boosting case based on current situation understanding to achieve various objectives
 - Flue gas reduction versus normal operation
 - Pull increase with same flue gas
 - CO concentration in flue gas reduction
 - New operating parameters
 - Proposal for oxygen flow to achieve customer objectives
 - Oxygen injectors positions
Furnace boosting – Technical study

Heat and mass balance application

- Current situation (case 1)
 - Pull limited by furnace pressure
 - Presence of CO in flue gas
 - Need to improve combustion

- Oxygen boosting (case 2)
 - Pull increase by 10%
 - Same combustion air flow
 - Oxygen injection
 - 2% O2 in dry flue gas

- Possible optimizations
 - Flue gas reduction
 - Cullet ratio change
 - ...

<table>
<thead>
<tr>
<th>Case</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull rate</td>
<td>t/d</td>
<td>400</td>
</tr>
<tr>
<td>Pull variation</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Natural gas flow</td>
<td>Nm³/h</td>
<td>0</td>
</tr>
<tr>
<td>Fuel oil flow</td>
<td>kg/h</td>
<td>1595</td>
</tr>
<tr>
<td>Electric boosting</td>
<td>kWh</td>
<td>1000</td>
</tr>
<tr>
<td>Total consumption</td>
<td>kW/t</td>
<td>1128</td>
</tr>
<tr>
<td>Combustion air flow</td>
<td>Nm³/h</td>
<td>16000</td>
</tr>
<tr>
<td>Air leaks</td>
<td>Nm³/h</td>
<td>500</td>
</tr>
<tr>
<td>Oxygen flow (100%)</td>
<td>Nm³/h</td>
<td>0</td>
</tr>
<tr>
<td>Oxygen enrichment</td>
<td>%</td>
<td>20,9%</td>
</tr>
<tr>
<td>Flue gas volume</td>
<td>Nm³/h</td>
<td>18454</td>
</tr>
<tr>
<td>Flue gas volume variation</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Flue gas temperature</td>
<td>°C</td>
<td>1480</td>
</tr>
<tr>
<td>O2 in dry flue gas</td>
<td>%</td>
<td>0%</td>
</tr>
<tr>
<td>CO2 in dry flue gas</td>
<td>%</td>
<td>18,2%</td>
</tr>
<tr>
<td>CO in dry flue gas</td>
<td>%</td>
<td>1,2%</td>
</tr>
</tbody>
</table>
Furnace boosting – Technical study

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull rate t/d</td>
<td>400</td>
<td>440</td>
</tr>
<tr>
<td>Pull variation %</td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td>Natural gas flow Nm3/h</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fuel oil flow kg/h</td>
<td>1595</td>
<td>1650</td>
</tr>
<tr>
<td>Electric boosting kWh</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Total consumption kW/t</td>
<td>1128</td>
<td>1059</td>
</tr>
<tr>
<td>Combustion air flow Nm3/h</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>Air leaks Nm3/h</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Oxygen flow (100%) Nm3/h</td>
<td>0</td>
<td>566</td>
</tr>
<tr>
<td>Oxygen enrichment %</td>
<td>20,9%</td>
<td>23,6%</td>
</tr>
<tr>
<td>Flue gas volume Nm3/h</td>
<td>18454</td>
<td>19028</td>
</tr>
<tr>
<td>Flue gas volume variation %</td>
<td></td>
<td>3%</td>
</tr>
<tr>
<td>Flue gas temperature °C</td>
<td>1480</td>
<td>1480</td>
</tr>
<tr>
<td>O2 in dry flue gas %</td>
<td>0%</td>
<td>2,0%</td>
</tr>
<tr>
<td>CO2 in dry flue gas %</td>
<td>18,2%</td>
<td>19,7%</td>
</tr>
<tr>
<td>CO in dry flue gas %</td>
<td>1,2%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Furnace boosting – Oxygen equipment

- Direct oxygen injection in the furnace chamber (example)
 - Manuel ball valve (open / close) on each point of use (1)
 - Flexible to O2 lance (2)
 - Orifice with adapted orifice diameter to control and limit the flow (3)
 - Non water cooled O2 lance inserted in the port close to the fuel injector (4)
New application
- First reference for Air Liquide in 2004
- Need for further test works to validate on all glass segments

Oxy-gas drivers for feeder
- Energy cost increase
- High demand on natural gas
 - CO2 emission reduction
 - New user (industry, power station,…)
- CO2 emission control
 - Need to reduce CO2 emission
- Process improvement

With existing O2 supply (flame polishing – oxy-fired melting)
- Attractive O2 price for this technology
Oxy-gas feeder - ALGLASS-FH

- Uniform heat distribution
- Feeder temperature up to 1550°C
- Power flexibility 3 to 9 kW
- Constant flame length when power varies
- Can be implemented on existing feeder blocks
- Low pressure drop (NG 0.5 bar / O2 0.2 bar)
- External mixing of NG and O2
Oxy-gas feeder - ALGLASS-FH

- Implementation of ALGLASS FH in same burner block as air-gas burner
- Less burners number versus air-gas operation
- Natural gas saving from 40 to 60%
Oxy-gas feeder - ALGLASS-FH

- ALGLASS FH implementation for test

Air-gas burner

ALGLASS FH

World leader in gases for industry, health and the environment
Oxy-gas feeder - ALGLASS-FH Offer

■ Economical balance for the implementation of ALGLASS FH
 ✓ Identification of customer objective for process improvement
 ✓ Natural gas saving & Oxygen consumption
 ✓ Budget calculation for the investment
 • Burners
 • Gas distributors, supports, flexibles, connections
 • Power control skid

■ Validation test on one zone
 ✓ Validation of burner operation in the customer conditions
 ✓ Customer specific parameters
 • Interaction with the glass (volatilization, quality)
 • Refractory compatibility
 • Natural gas saving & and oxygen consumption

■ Equipment of a complete feeder
Oxy-gas feeder : Budgetary study

Air-gas situation

- Natural gas consumption 370 Nm3/h
- 1500 air gas burners
- 40 zones of temperature control

Oxy-gas hypothesis

- Natural gas consumption 140 Nm3/h
- Oxygen consumption 270 Nm3/h
- 500 oxy-gas burners (average power 2,8 kW)
- 30 zones of temperature control

Economical balance

- Benefit = NG saving - O2 cost
 - 250 k€/year with 50% natural gas saving
 - 400 k€/an with 60% natural gas saving
- Investment cost 700 k€ (piping excluded)
- Other benefits : temperature, CO2 reduction (3500 t/y), glass quality
Conclusions

- Oxy-firing advantages have been presented
 - Access to oxygen becomes easier

- Well established techniques are currently used
 - Limited technical risk
 - Well mastered cost and implementation delay

- Emerging oxy-firing techniques are implemented
 - New developments continue to appear

- Air Liquide is available to study your particular case